A detailed example of using the GPM/SA code

Kary Myers, Dave Higdon, Jim Gattiker, Bill Rust

December 2008; Revised January 2012

1 Introduction

GPM/SA code is a MATLAB program that can be used with real ateesd output. It can be used
to perform multiple analyses including those listed below.

e Predict the output from a computer code based on an emulatstwcted from a fully
Bayesian Gaussian spatial process (GaSP) model

e Compute main effect, joint effect, and total effect seusitiindices for the output from a
computer code based on an emulator constucted from a fuilgdtan GaSP model

e Estimate the posterior distribution of the calibrationgraeters of a computer model based
on computer code output and field data output using a Bay@siglementation of the
Kennedy and O’Hagan (2001) model as described in Higdon €2@(08).

e Predict the output of a “true” input/output relationshipsbd on computer code output and

field data output.

This document walks through a specific application, showiog to set up, run, and visualize the
results using the GPM/SA code. Specifically, this tutoriadves

e How to set up a problem using the GPM/SA code,

e how to calibrate model parameters using physical obsensti

e make predictions for the physical system at new input ggttiand

e assess the accuracy of the Gaussian process emulator ukedhiodeling.

2 An lllustrative Problem

Suppose we drop balls of a given density from a tower at Ifiggghts 5, 10, 15, and 20 meters.
We wish to predict the time it takes them to fall to the grouvé: can develop a predictor by
conducting dield experimenin which we drop balls of different radi (and the desired density)
from different heights. Each dropped ball produces vecitpuat in the form of a height-time
curve, i.e., a curve showing the time as function of the curheightt = ¢(h) of the ball at a set of
measured heights.

Suppose the following equation (in terms of the ball's aelon) describes the true height-time

curve': , ,
d*h C (dh
@ 9T R (E) : @
whereg is the acceleration due to gravity, is the coefficient of drag, and, as introduced abdve,
is the radius of the ball.

To make this toy problem realistic, suppose we know the acatbn due to gravity but don’t
know the coefficient of dra@’. In addition, our only insight into the physical process esrfrom
the field data we collect at our known initial tower heighgs and that we don't know the true
physical process described by (1).

In addition to the field data, we have computer code (callsidhailatol) that takes as input a radius
R and a coefficient of drag’ and produces a height-time curve giving the computed tinaes
some set of tower heights(they don’t need to be the same heights used in the field erpats).
Our simulator does this in a deterministic way, so that tieesmputs(R, C') will always produce
the same height-time curve. In this illustration, let's poge that the simulator produces output
according to this equation for acceleration:

d2h C dh
=g (2)

a2~ 7 Rdt’
Note that while (1) has a squared velocity tewh (dt), (2) includes velocity as a linear term only.
Thus our computer model is systematically “off” from regliand indeed the units of (2) are no
longer acceleration units. Complicating matters, imagfvae our simulator is very expensive to
run, so we can't exhaustively try all possible input pdiks C'). This is a typical situation in fields
like climate modeling.

Since we can't run the simulator at all possible location§RnC, h)-space, we use a simplistic
Latin hypercube (LH) design to choose locations at whictutothe code. More serious
applications would be better served by enforcing some fdrapace filling in the LH design. We
would like to model the resulting simulator output so thateae (inexpensively) predict what the

1Equations (1) and (2) are differential equations that casdbeed for height: as a function of time and ball radius
R. We require the inverse of this: our field data have time a®thput recorded as a function of height and radius. We
use an optimizer to perform this inversion in MATLAB.

output would be at untriedR, C, k) inputs. In addition, we want to use our field data to adjust the
simulator output so that it matches reality as best as pessibat is, we want to adjust the
unknown parameter€Xin this example) until our simulator output fits the field dagaen with the
inadequate model in (2).

As described in the sections below, the Gaussian processlmalimlvs us to do both these things.
We first use a stationary Gaussian process to model the gorislautput surface, at the same time
providing a measure of the uncertainty in our model at difféetocations. We call the Gaussian
process model in this context amulator, as it is “emulating” the output of the simulator. We then
use another stationary Gaussian process to modelisbeepancybetween the simulator’s output
and the field data in order to calibrate the simulator.

Here’s a summary of the setup of our tower example, whaitenotes the size of our experimental
data set denotes the number of runs of the simulator, apdienotes the number of heiglits
used by the simulator:

¢ We have data from = 3 field experiments, one each for balls of radias {0.1,0.2,0.4}
meters. Each experiment produces a curve of drop times nidadese or four height-time
pairs. For the two smallest balls, the experimental heigteé,. € {5, 10, 15,20} meters.
We’'ll imagine that the largest ball is too heavy to carry te thllest tower, so its drop time is
only measured from experimental heightse {5, 10, 15} meters.

e We used a scaled Latin hypercube design to seleatithe25 (R, C') pairs, shown in Figure
1, at which to run our simulator. For eat¢R, C) pair in the design, the simulator produces a
curve ofn,, = 16 height-time pairs, where the simulation heightsare evenly spaced in
[1.5,24] meters.

e Our simulator uses a model (2) that is inadequate to desttrébue physical process (1).

3 How we use the Gaussian process model
The Gaussian process model considers two kinds of inputs:

1. & = (21,22, ...,2,) denotes inputs that are under the control of (or are obskerish the
experimenter in both the field experiments and the simulatos. In our example we have
p = 1input of this type:x = x = R, the radius of the ball being dropped.

2. 6 =(01,0,,...,60,) denotes inputs to the simulator that we need to estimate tisin
experimental data. Thegecould correspond to real physical quantities or could be
parameters of the simulator code. In our example we havel input of this type:

0 = 0 = C, the coefficient of drag.

m_ R(p=1) C(g=1)
1 0.0996 0.2105
2 0.3995 0.1795
3 0.2956 0.1167
4 0.4033 0.1457
5 0.4478 0.0610
6 0.0971 0.2376
7 01222 0.0982
8 0.3155 0.1072
9 0.1676 0.0742

10 0.1480 0.097¢

11 0.2331 0.163¢

12 0.2251 0.227¢

13 0.0795 0.1977

14 0.3272 0.2237

15 0.2460 0.1914

16 0.2881 0.246¢€

17 0.3502 0.0702

18 0.3613 0.134F

19 0.3833 0.1564

20 0.2095 0.1762

21 0.1308 0.1498

22 0.1898 0.1236

23 0.4264 0.2087

24 0.0579 0.0544

25 0.2676 0.0885

Figure 1:Left: Scaled Latin hypercube design withh = 25 rows of (R, C') pairs. Right: A plot of

the design.

Note thath is not considered an input to the simulator since the simulatoduces a 16-vector of
drop times for an evenly spaced set of heights betweenl andh = 24 meters.

0.25

0.2

O 0151

0.1f

*
0.05

0.05

0.1

I
0.15 0.2

The model also makes use of two kinds of outputs:

1. yobs(x), the output of the field experiments. For each experimgjt,can be a scalar, or, as
in our tower example, it can be a curve. For the tower experi®eqns = tobs the vector of
times, one time for each tower height.

Note that not all experiments need produce output of the s@ree For instance in our tower
experiment we have 4 recorded times for the two smaller bali®nly 3 for the largest ball.

2. ysim(z, 0), the output of the simulation runs. As with the observed data can be a scalar
or a curve. For our tower example, we'll assume that the sitouluses an evenly spaced
grid of n,, = 16 heightsh, and computes a time for each height on the gridysse = tsim.

Unlike the observed data, the simulator output will alwasgehthe same size, i.e., the same

0.25 0.3

I
0.35

0.4

0.45

number of computed times. The grid of heights will be the séam run to run.

Here’s the idea: We use the simulator outpat, to construct a Gaussian process model that
emulateghe simulator’s behavior at arbitrafy?, C') pairs. We use the field datgpsto calibrate

the coefficient of drag@’' so that the simulator output best matches the field data. Andss
another Gaussian process model to captur@igmepancy between the simulator output and the
field data.

4 Some details of Gaussian processes

Gaussian processes (GP'’s) are random functions that haverpuseful for modeling output from
computer code, as well as other spatial phenomena. Figurevilsshow a a Gaussian process
modeln(z) defined on a one-dimensional spate= [0, 1], can be used to estimate a smooth,
deterministic function.

Any Gaussian process is determined by its mean fungtior) (defined onX’) and its covariance
function Co\z, 2') (defined on¥ x X.). In the case of the GP used in Figure 2, the mean function
is 0, and the covariance function is given by

Cov(z,z') = exp{—[(z — z')/.3]*}.

Note that while the mean function can be rather general,dia@r@mnce function must be positive
definite.

Given the five function evaluations shown in Figure 2, theiltesy Gaussian process fit is assured
to be smooth, and to interpolate the function evaluatiomergby the black dots. The fitted GP that
interpolates the data is now described by a posterior lligtan with updated mean and covariance
functions which depend on the given function evaluationsavi® from thisposteriorGP are given

by the cyan lines. The mean function is given by the dashetinedThis basic modeling

approach can be extended to higher dimensional sugpbst generalizing the mean and
covariance functions. In practice, parameters contigliire covariance function are also estimated
from the computer model output. See Higdon et al. (2008) forawletails about the model.

GP emulation of f(x) = exp(—1.4x)*cos(7*pi*x/2)

v _
—i
o _
—i
—~
X o
N
o _
o
o
S -

Figure 2: A Gaussian process emulator for the functidm) = exp{—1.4z} cos(3.5mx) over

x € [0,1] using the five observations of the function given by the bldaots. The black line gives
the true functionf (z), the dashed red line gives the posterior mean GP estimateharcyan lines
give plausible realizations of the GP emulator given thediveerved function evaluations. The GP
emulator exploits the smoothnessfi(w) and the fact that the five evaluations are noiseless.

5 Preparing the data for use by the GPM/SA code

We use the GPM/SA code to calculate the model and to makegpiets from the model. Before

we can use the code, we need to read in our data; transformphtsiand outputs; compute basis
functions for transforming the standardized outputs aedltecrepancy term; and package the data
into MATLAB structures that we can pass to the GPM/SA code.

We'll walk through this for our tower example. Remember that

e z = R, the radii of the balls;
e) = (', the coefficient of drag; and

e y = t, the vector of times (for both the field experiments and theutator runs).

The heightsh serve as indices to the time vectors.

All the code in this section can be found in the MATLAB fikaddata.m

5.1 Reading the data

For our example we have three data files for the field expetisreamd three for the simulator runs:
One with the inputs Rops for the field experimentsisim and Csim, for the simulator runs), one with
the outputs#yps andtsim), and one with the heightdi{,s andhsim). The set of simulator inputs
(the particular values aksim andCsjm) is called thedesignto make the analogy with experimental
design.

% read in the field (observed) data

>> Robs = textread('field.radii’); % radii R

>> hobs = textread('field.height’); % heights h

>> tobs = textread([dirstr ‘field.dat’])’; % times t

>> tstd = textread([dirstr ‘field.sd"]); % sd of measured t imes

Robs =
0.1000 0.2000 0.4000
% hobs has all the tower heights;
% we only use the lowest 3 for the largest ball
hobs =
5 10 15 20
% tobs has one column per experiment, one row per tower height

% The NaN in experiment 3 indicates we didn't drop the largest
% ball from the highest tower.

tobs =

1.2180 1.1129 1.0611
2.0126 1.7225 1.5740
2.7942 2.2898 2.0186
3.5747 2.8462 NaN

tstd

0.1000 0.1000 0.1000
0.1000 0.1000 0.1000
0.1000 0.1000 0.1000
0.1000 0.1000 NaN

% read in the design and the simulator output

>> [Rsim Csim] = textread('sim.design’); % design (R and C)
>> tsim = textread('sim.dat’); % times t

>> hsim = textread('sim.height’); % heights h

>> n = size(tobs, 2); % number of experiments
>> m = size(tsim, 2); % number of simulation runs

5.2 Transforming x and 6

The GPM/SA code requires that the inputand@ lie in the interval[0, 1]°*9. Here we accomplish
this by shifting and scaling the original valueszoéndé, but in other settings another approach
could be appropriate.

We first transform the inputs to the simulatdts(,, andCs;m) so they lie in[0, 1], then we use the
minimum and range oRsjm to transform the input to the field experimentgfs onto the same
scale.

% transform the simulator inputs so each dimension lies in [0 , 1]
>> Rsmin = min(Rsim);

>> Rsrange = range(Rsim);

>> Rsim01 = (Rsim - Rsmin) / Rsrange; % transformed R

>> Csmin = min(Csim);
>> Csrange = range(Csim);
>> Csim01 = (Csim - Csmin) / Csrange; % transformed C

% transform the field experiment input the same way
>> Robs01 = (Robs - Rsmin) / Rsrange; % transformed R

5.3 Transforming ysim and yops

The GPM/SA code requires that the outpytisave mean zero and variance one. As above, we first
transform the output from the simulatds;f,) and then use those values to transform the output
from the field experimentt(,s. Here we want the simulator output to have mean zero at each
heighth and an overall variance of one.

% standardize the simulator output

>> tsimmean = repmat(mean(tsim, 2), [1 m]); % the mean simula tor run
>> tsimStd = tsim - tsimmean; % make mean at each height zero
>> tsimsd = std(tsimStd(:)); % standard deviation of ALL ele ments of tsimStd

>> tsimStd = tsimStd / tsimsd; % make overall variance one

Now we transform the field data. We want to use the value of teamsimulator runt§immean
above) at each experimental height to do this, but the heigthof the simulator doesn’t match the
experimental heights; i.e., we don’t know the value of themsimulator run at all the
experimental heights. Instead we’ll interpolatenmean in order to find its (interpolated) value at
each experimental height. We'll use this interpolated nesahthe overall standard deviation of all
elements of the simulator runsimsd , to transform the field data.

Since each experiment could have a different size (diftanember of heights at which the ball
was dropped), we'll loop over the experiments and record the results in a structure arragcall
yobs .

>> for ii = 1:n
% number of heights with measurements for experiment ii
numhts = sum(Cisnan(tobs(:, ii)));

% do the interpolation and get the interpolated values at the experimental heights
yobs(ii).tobsmean = ...
interpl(hsim, tsimmean(:,1), hobs(1:numhts), ’'linear’, ‘extrap’);

% do the standardization

yobs(ii).tobsStd = (tobs(1:numhts, ii) - yobs(ii).tobsme an’) / tsimsd;

% for convenience, record some extra information in yobs

yobs(ii).hobs = hobs(1:numhts); % the heights where measur ements were taken
yobs(ii).tobs = tobs(l:numhts, ii); % the untransformed ou tput

% now record the observation covariance matrix for the measu red times
yobs(ii).Sigy = diag(tstd(1:numhts,ii)."2);

% now the observation covariance for the standardized obser vations

yobs(ii).SigyStd = yobs(ii).Sigy./(tsimsd."2);
end

Note thatyobs(ii).Sigy holds the covariance matrix for the observations of expenirin ; one
can change the prior specification for the measurementgedio ensure that it stays close to this
specified prior value.

5.4 Computing the K basis for transforming ysim and yops

We want to capture the variation in the height-time curveesssimulation runs; that is, we want
an efficient representation of how the simulator outputesait different locations in

(z,0) = (R, C)-space. We will do this by computing the singular value deposition of the
simulator output to get a set of basis functions (callediAhleasig. While we typically use SVD,
any linear transformation will work. For a compact repréagan, we use,, < m basis functions
that capture most of the variation in the simulation runsoté\thatp,,, the number of basis
elements, shouldn’t be confused wjththe dimension of the input.)

>> pu = 2; % number of basis components to keep
>> [U, S, V] = svd(tsimStd, 0); % compute the SVD
>> Ksim = U(;, 1:pu) * S(l:pu, 1:pu) ./ sqgrt(m); % get the pu basis components

This Ksim matrix of basis elements has, = 16 rows (one for each height in the grid used by the
simulator) andy,, = 2 columns. We now compute a corresponding basis mafgis for each
experiment in the field data. These will have three or foursréone for each experimental height
used) and agaip,, columns.

To get these matrices we interpolate between height gikds\le did to transformygns above) and
again store the results in the structure ag@ns .

>> for ii = 1:n
yobs(ii).Kobs = zeros(length(yobs(ii).tobsStd), pu); % a llocate space

% compute each basis component

for jj = 1:pu
% do the interpolation and get the interpolated values at the experimental heights
yobs(ii).Kobs(:, jj) = ...
interp1(hsim, Ksim(:, jj), yobs(ii).hobs, ’linear’, 'ext rap’);
end

end

5.5 Specifying theD basis for modeling the discrepancy term

The discrepancy term(z) models a systematic bias between the simulator (at the egistgsfor
the calibration paramet#). We expect that the estimate f&z) will be similar for nearby values
of z. To this endy(z) is modeled as a GP with a correlation structure across #pace.

In the ball dropping example, for a given ball radius)(z) is a function over the possible drop
heightsO < h < 24. Overh € [0, 24], 6(z) is represented as a linear combination of basis
functions

whered;(-) is a normal density centereda, with a standard deviation of 2, and thgs are
modeled as iidV (0, \,). This model is depicted in Figure 3. Generally, the userifipsdhe basis
representation for the discrepancy term in the GPM/SA atdesfile, which is named
readdata.m for this example. Here is how this discrepancy basis is §ipeci

Specifying the discrepancy basis requires that the userrdete the form and location of the basis
elements?;(-). For this example, we take thg(-)’s to be normal kernels with an sd of 2. The
kernels are centered at a grid of 13 heights equally spadecbe 0 and 24. For each experiment,
we need to construct the matiddat whose rows correspond to the number of observations in the
experiment, and whose columns correspond tgthe 13 basis elements. For plotting purposes,
we also construct the matrRsim which has rows corresponding to a dense grid ovehtspace:

% -- D basis --

% JG: lay it out, and record decomposition on sim and data grid s

% JG: Kernel centers and widths

>> Dgrid = 0:2:max(hsim); % locations on which the kernels ar e centered

>> Dwidth = 2; % width of each kernel

pv = length(Dgrid); % number of kernels

% Compute the kernel function map, for each kernel

% Designate space for the Dsim matrix,

% one row per simulated height, one column per kernel

% (consider making the grid of heights much denser for plotti ng)
>> Dsim = zeros(length(hsim), pv);

% designate space for the Dobs matrix for each experiment,
% one row per experimental height, one column per kernel
>> for ii = 1in

yobs(ii).Dobs = zeros(length(yobs(ii).tobsStd), pv);
end

% create each kernel
>> for jj = 1l.pv
% first create kernel jj for each experiment
for ii = 1:n
% normpdf computes the value of a Gaussian with mean
% Dgrid(jj) and variance Dwidth at each element of hobs
yobs(ii).Dobs(:, jj) = normpdf(yobs(ii).hobs, Dgrid(jj) , Dwidth);
end
% now create kernel jj for the simulations
Dsim(:, jj) = normpdf(hsim, Dgrid(jj), Dwidth);
end

% normalize the basis elements of D so that the marginal varia nce of delta is about 1
>> Dmax = max(max(Dsim * Dsim’));
>> Dsim = Dsim / sqgrt(Dmax);
>> for ii = 1:n
yobs(ii).Dobs = yobs(ii).Dobs / sqrt(Dmax);
end

11

basis construction of discrepancy

o
N
T}
—|H_
°
2 o
g -]
S
Q T}
[CR=
.0
g o mm@
o) o
n
S
I I I I I L <
I
0 5 10 15 20
= L w
:"2 —
'Ul o
K% -
(2]
©
2 0
B o
=
2 o
b . <
= o
0
m
o]
o
T}
2
e]
EH
S w |
o
o]
o
n
S -
1
I I I I I
0 5 10 15 20
h

Figure 3: Basis construction @fz) for the ball dropping example. Here a model &) — the
discrepancy between the calibrated simulator and expatahebservations at — is modeled by
a linear combinations of normal kernels. Top: 13 normal &krnvith sd=2 are placed at heights
h =0,2,...,24. Each of the 13 columns in D corresponds to one of these begiglk. Middle:
each basis kernel is multiplied by a random normal varigtehich is estimated in the GPM/SA
code using the simulation output and experimental datatoBotthe discrepancy is set to the sum
of these weighted kernels. In vector form, this is given/by(z), wherev(x) is the 13 vector of
weights corresponding to input conditian

12

For modeling purposes, only tli®obs matrix in required for eachiobs(ii) . TheDsim matrix
is useful for plotting the estimated discrepancy over a desst of heights. ThB matricies are
normalized so that the prior marginal variance f@r) is approximately one whek, = 1.

For normal basis kernels, the spacing needs to be no morerteatandard deviation between
adjacent kernels to ensure that no sparsity effects appkamwidth of the kernels controls the
spatial dependence iffx) — wider kernels will givey fewer “wiggles” over the suppoft. The
properties desired for the discrepancy term will necelysdepend on the application being
considered. The choice of an sd of 2m is ok for this ball droggpplication. See other
applications for different examples of discrepancy basisstruction. For more details regarding
the use of kernels to create GP models see Higdon (2002).

13

5.6 Package all the pieces

Next we make a structure that contains all the informatioiveveomputed here. This structure,
here calledata , will contain a field for the simulated datsifgData) and another for the field data
(obsData). For both fields, we’'ll include information that’s requirby the model as well as extra
information (stored in a subfield calledg) that will later make it easier for us to return the
output to the original scale and to do plots.

Since the simulated data have the same size for each rukguhé observed data), packaging this
information is straightforward.

% required fields

>> simData.x = [Rsim01 CsimO1]; % our design (standardized)
>> simData.yStd = tsimStd; % output, standardized

>> simData.Ksim = Ksim;

% extra fields: original data and transform stuff

>> simData.orig.y = tsim;

>> simData.orig.ymean = tsimmean;

>> simData.orig.ysd = tsimsd;

>> simData.orig.Dsim = Dsim;

>> simData.orig.t = hsim;

>> simData.orig.xorig = [Rsim Csim]; % original scale for si mulated R, C

For the observed data we need to package each experimerdtetpaince each could have a
different length.

% loop over experiments

>> for ii = 1in
% required fields
obsData(ii).x = Robs01(ii);
obsData(ii).yStd = yobs(ii).tobsStd;
obsData(ii).Kobs = yobs(ii).Kobs;
obsData(ii).Dobs = yobs(ii).Dobs;
obsData(ii).Sigy = yobs(ii).Sigy./(tsimsd."2);

% extra fields: original data
obsData(ii).orig.y = yobs(ii).tobs;
obsData(ii).orig.ymean = yobs(ii).tobsmean;
obsData(ii).orig.t = yobs(ii).hobs;

end

Now we'll put simData andobsData in a structure calledata that we can pass to the GPM/SA
code.

>> data.simData = simData;
>> data.obsData = obsData;

14

6 Model initialization and MCMC

Now that we have code to package the data appropriately, waitalize the model, use the data
to compute the posterior distribution of the parameterd,than sample from this distribution via
Markov chain Monte Carlo (MCMC). MCMC is a general recipe fiwoducing a partial realization
of a Markov chain whose stationary distribution is the postalistribution. This Markov chain
realization is then treated as a (dependent) sample froppas$ierior distribution from which one
can estimate posterior moments or probabilities. For Batagarding MCMC, see (Robert and
Casella, 1999).

The code in this section is in the MATLAB fil@nmcme.m.

1. First we’'ll callreaddata.m from Section 5 in order to get thiata structure created there;
we'll store it in a variable calletbwerdat

>> towerdat = readdata()
towerdat =

simData: [1x1 struct]
obsData: [1x3 struct]

2. Now we can do the initial setup of the model using the GPM¢Bde function
setupModel() . The functionsetupModel() takes thevbsData andsimbData fields from
towerdat , makes all the structures we need to do MCMC, and returnsietgte which
we’ll call pout for “parameteutput”.

>> pout = setupModel(towerdat.obsData, towerdat.simData)

SetupModel: Determined data sizes as follows:

SetupModel: n= 3 (number of observed data)

SetupModel: m= 25 (number of simulated data)

SetupModel: p= 1 (number of parameters known for observatio ns)
SetupModel: g= 1 (number of additional simulation inputs (t o calibrate))
SetupModel: pu= 2 (response dimension (transformed))

SetupModel: pv= 13 (discrepancy dimension (transformed))

pout =

data: [1x1 struct]
model: [1x1 struct]
priors: [1x1 struct
mcmc: [1x1 struct]
obsData: [1x3 struct]
simData: [1x1 struct]
pvals: []

We’ll describe the gory details of the fieldsafut in Section 9. Meanwhile it's enough to
know that they include the simulated and observed dataftianed by theK” matrix (data);

15

initial values for the parameters of the Gaussian procestehtaodel); priors on the model
parameters which we’ll be estimating via MCMgi¢rs); details (like step sizes) of the
MCMC routine for getting draws from the posterior distriioumt of the parametersngmg;
and theobsData andsimData structures that we gave it in the calldetupModel() . It also
includes a placeholder for thwals field which will hold the MCMC draws.

. We now have the mathematical form of the posterior distidm of the model parameters,
and we want to use MCMC to get draws from it via the GPM/SA cagefiongpmmemc().
These draws will be added to theals field of thepout structure created above.

(a) First we'd like to update the default MCMC settinggtut.mcme by using the
GPMI/SA code functiontepsize() to do burn-in of the MCMC chains and adjust the
step size. Here are the default setting values before wepmlarte the step size; these
values were chosen to provide reasonable performance ety of problems:

>> pout.mcmc
ans =

thetawidth: 0.2000
rhoUwidth: [0.1000 0.1000 0.1000 0.1000]
rhoVwidth: 0.1000
lamVzwidth: 10
lamUzwidth: [5 5]
lamWswidth: [100 100]
lamWOswidth: 100
lamOswidth: 499.9995
pvars: {1x11 cell}
svars: {theta’ ’betaV’ ‘’betal’ ’lamVz' ’lamUz’ ’lamWs’
lamWOs’ ’lamOs’}
svarSize: [1 1412 21 1]
wvars: {1x8 cell}

The draws used for burn-in will be added to the pvals field as $elow. Using 13
levels will give the step size estimation process a good @hémfind a near optimal
step size.

>> nburn = 100; % number of draws to discard as "burn in"
>> nlev = 13; % number of candidate levels used for step size es timation

>> pout=stepsize(pout,nburn,nlev)

Setting up structures for stepsize statistics collect ...
Collecting stepsize acceptance stats ...

Drawing 100 samples (nBurn) over 13 levels (nLev)
Started timed counter, vals 1 -> 1300

963..20.29sec
Computing optimal step sizes ...
Step size assignment complete.

pout =

16

data: [1x1 struct]
model: [1x1 struct]
priors: [1x1 struct]
mcmc: [1x1 struct]
obsData: [1x3 struct]
simData: [1x1 struct]
pvals: [1x1300 struct]

% look at the pvals field
>> pout.pvals

ans =

1x1300 struct array with fields:
theta
betaV
betaU
lamVz
lamUz
lamWs
lamWOs
lamOs
logLik
logPrior
logPost
thetaAcc
betaVAcc
betaUAcc
lamVzAcc
lamUzAcc
lamWsAcc
lamWOsAcc
lamOsAcc

Thepvals object holds the result of the MCMC. Here it records the 13@0vd from
the posterior distribution for each parameter producechbyMCMC updates carried
out so far. Subsequent callsgpmecmc() will augment the draws recorded prout .

In addition to the parameter values at each of the 1300 MClfssthe
corresponding values for the log likelihood, the log praomd the log posterior are also
recorded for each of the 1300 steps. Here are the updated M<&¥iGgs:

>> pout.mcmc

ans =

thetawidth: 0.2668
rhoUwidth: [0.5341 0.4523 2.6462 1.7655]
rhoVwidth: 0.4656

lamVzwidth: 433.1763

lamUzwidth: [0.8726 1.9799]

lamWswidth: [1.6396e+03 4.0254e+03]

lamWOswidth: 2.0908e+04

lamOswidth: 3.1539e+04

17

pvars: {1x11 cell}
svars: {theta’ ’betaV’ ‘’betal’ ’lamVz’ ‘’lamUz’ ’lamWs’
lamWOs’ ’lamOs’}
svarSize: [1 1412 21 1]
wvars: {1x8 cell}

Again, we'll explain the fields ofout.mcmc in Section 9.

(b) Now we can get some new MCMC draws (realizations) thatlwsé for estimating
the model parameters. These will be added topthe field of pout .

>> nmcmc = 10000; % number of draws we want

>> pout = gpmmcmc(pout, nmcmec, ’'step’, 1)

Started timed counter, vals 1 -> 10000
787..1577..2363..3158..3923..4675..5409..6152..6877 .7614.. 1.7 min,
0.5 min remain
8344..9077..9817..2min:12.57sec

The’'step’, 1 flag tellsgpmmcmado use the proposal widths currently in theut
object.

pout =

data: [1x1 struct]
model: [1x1 struct]
priors: [1x1 struct]
mcmc: [1x1 struct]
obsData: [1x3 struct]
simData: [1x1 struct]
pvals: [1x11300 struct]

Note that there are now 10,000 additional values recordeéddch parameter in the
pout object. These were produced by the 10,000 MCMC iterationgecbout by the
last call togpmmcecmc().

4. At this point we have everything we need to make predistigmcluding the principal
components, the discrepancy basis, and the dimensione aidlel. We can do save
pout to record everything we've computed so far.

7 Some diagnostic plots

In this section we will us¢z, 8) and(R, C') interchangeably; the GPM/SA code is written in terms
of (z,6), while the code for our tower example is written in termg Bf C'). Recall thatr = R
andd = C' in this example.

We'd like to look at the MCMC draws and the resulting paramegtimates. Since working with
all 10,000 draws imout.pvals can be cumbersome, in some cases we'll take a smaller, evenly
spaced sample of the draws and examine those instead.

18

from = 2000; % start getting realizations at this index

to = length(pout.pvals); % continue to the last realization

thismany = 500; % grab this many evenly spaced realizations

ip = round(linspace(from, to, thismany)); % indices of the p vals to use

With the exception of thehowPvals() function below, the plotting functions in this section are
not part of the GPM/SA code package. Thefiles used are available separately on the web page.

7.1 Traces of the MCMC draws

The GPM/SA code functioshowPvals() will produce traces of the MCMC draws for the
parameters in the model as shown in Figure 4.

showPvals(pout.pvals);
Processing pval struct from index 1 to 11300

theta: mean s.d.
1 0.372 0.03914
betaV: mean s.d.
1 0.5771 0.8957
betaU: mean s.d.
1 8.428 2.372
2: 0.6872 0.3639
3: 4,281 2.547
4: 3.329 2.626
lamVz: mean s.d.
1 101.4 79.35
lamUz: mean s.d.
1 0.4686 0.1506
2: 0.8496 0.3154
lamWs: mean s.d.
1 457 296.1
2: 968.7 574.3
lamWOs: mean s.d.
1 2.851e+04 2010
lamOs: mean s.d.
1 1.564e+04 3599
logLik: mean s.d.
1 37.55 29.62
logPrior: mean s.d.
1 1663 4,191
logPost: mean s.d.
1 1700 28.75

Note that we're callinghowPvals() with all the draws irpout.pvals , not just the ones specified
by the indexp defined above. This includes the draws used for burn in apdsite estimation.
The resulting plot is shown in Figure 4. The figure shows thatdraws of all the parameters have
a stationary distribution after 2000 draws, indicatingvargence of the chains. Note that a

19

rerunning of this MCMC chain will give slightly different awers due to variation in the random
numbers generated.

o

wbetaU betav theta

a o

lamVz

OO ND» PN
A N O O CD O D O D U -

Damuz
o

lamWs

NamOdamWOs

o

a N P w o

logLik
o

!
=Y
o D
a1 ao
o a

éégg I T T T
1000[-

1
0 2000 4000 6000 8000 10000 12000

logPosibgPrio

Figure 4: Traces of the MCMC draws of the parameterpdm.pvals as generated by the
showPvals() function.

7.2 Posterior distribution of § = C

Figure 5 shows the histogram of the MCMC draws from the pastelistribution off. These
values come from the top row of Figure 4, excluding the burdfaws. This plot was made with
the code inhetaposthist.m using just thehismany realizations specified by the indgx above:

thetaposthist(pout, ip);
7.3 Principal components

Figure 6 shows thg,, = 2 principal components used in this example. Note that thicatiscale
for the second principal component is much smaller thandhéte first; this confirms that most of

20

1000

Counts

I I I I
0.6 0.7 0.8 0.9 1

Figure 5: Histogram of draws from the posterior distribotaf C', on the[0, 1] scale.

the variation in the data is being captured by the first ppaiccomponent. We make this plot as
follows:

npc = size(pout.simData.Ksim, 2); % number of principal com ponents
for ii = 1:npc

subplot(npc, 1, ii);

plot(pout.simData.Ksim(:, ii))

title(’PC ’, numa2str(ii)])
end

Figure 7 shows the posterior mean of the Gaussian proceks wfdight functions for the two
principal component at any givem,() pair. The weightu(x, §) at each £,) pair is used to make
the predictions from the model. The coeleresponsesurf.m calls the functiorgPred() to make
predictions at each grid point and then generate the plot:

PCresponsesurf(pout, ip);

7.4 Correlation parameters in the Gaussian process fit

Using the MCMC draws of the spatial dependence paramgtes® can compute

p = exp{—[/4}. The value ofy gives us information about the dependence of the simulation
output on each input parameteandd. Figure 8 shows boxplots of the posterior draws for ke
for eachz andé, and for each principal component. As above, the figure wasrgéed using a
subset of the realizations:

21

PC1 x 107 PC2

0 8
6
-0.5
4
-1 2
0
-1.5
-2
-2 -4
0 5 10 15 20 0 5 10 15 20

Figure 6: Thep, = 2 principal components used in modeling this example. Eaehli6-vector
using then,, = 16 heights in the simulator grid. Note the different scalestanttvoy-axes; PC 2
captures much smaller variations in the data than does PC 1.

rhoboxplots(pout, ip);

Whenp = 1 for a particularz or § and principal component, it means that particular compbokn
the simulator output is constant along that dimension. Thersimulation is not sensitive to that
input; i.e., knowing the value of the input gives no inforioatabout the value of the output. As
goes smaller than 1, this indicates activity associateld thi&it input. The outputs will vary
smoothly with the inputs, with smalless indicating less smoothness.

As p approaches 0 for a particular dimension, the modeled ragpigrincreasingly flexible; the
model eventually fits the data as noise, i.e., it doesn’t fmdsanooth trend. This suggests
predictions from the model are suspect. Thus if any of theolmis in Figure 8 show values that
are all close to zero, more diagnostics (e.g., cross-vaiaashould be considered before
accepting predictions from the model.

22

PC1 PC 2

Figure 7: Posterior mean of the Gaussian processes of ttghirvenctions for the two principal
components. The weights(x,) are used to make the predictions.

7.5 Discrepancy estimation

The GPM/SA code calibrates the input parameters to matcficldedata as well as possible. It
then uses another Gaussian process to estimate the discydpetween the resulting simulation
(using the calibrated parameter values) and the field dégard-9 shows how this can work. The
left column shows the calibrated simulations; the cent&rmoa shows the discrepancy between
the field data (circles) and the calibrated simulations;thedight column shows the calibrated
predictions made after adding the discrepancy term to tlilerated simulation.

The codestasdeltas.m computes predictions for each experiment, computes tloeegliancies,
and plots them along with the calibrated predictions:

etasdeltas(pout, ip);

23

PC1

08l _—]
0.6 f 1

.
:
04}
02 ——— 1
i
X

theta

PC 2

0.8 - ! -

0.6 A

04t 8

0.2

Figure 8: Boxplots op = exp{—//4} for the draws of3 associated witlke andé for each principal
component.

7.6 Predictions

Predictions. For each ruri of the simulator, we construct a model using the other ruxdding
run), then predict ruri based on the resulting model. This allows us to look for tsendhe
quality of our predictions as a function of the inpils, andCsim. Figure 10 shows the results
sorted byRsim, while Figure 11 shows them sorted 6.

We can also look at the residuals for the predictions on eatirese held out runs as shown in
Figure 12. Each curve gives the residual for one run at eaighthd he plot shows how the
predictions are better at lower heights, which makes sanse sur simulator model’s error in
using a linear velocity term rather than a squared term \eikkkacerbated at higher heights.

Predictions at particular input values. Figures 10 and 11 are a little overwhelming with so many
plots to consider. A coarser way to explore trends of thisisdo do a similar plot using some
selected “high,” “middle,” and “low” values oRsjm andCsjm. This is shown in Figure 13.

Figure 14 gives sensitivity plots to show changes in the Kitan output values as the valuesaof
(left) andf are adjusted.

24

Calibrated Simulations Discrepancy Calibrated Predictions

0 10 20 0 10 20 0

0 10 20 0 10 20 0

R=02m
Time (s)
N
|
N o
T
|
&
N
\] \ B
o o
N N
o o

4 4
o
oo 0 Fe———— |
nE 2 / 2
x F

-2
0 0
0 10 20 0 10 20 0 10 20
Height (m) Height (m) Height (m)

Figure 9: Circles show the field data, and colored lines m#iche 5th and 95th percentiles.
Each row is a different ball sizeLeft column: Calibrated simulationsCenter: Discrepancy term
(dashed line shows where zero discrepancy would Bght: Calibrated predictions = calibrated
simulations + the discrepancy term.

8 What if I don’'t have any experimental data?

The GPM/SA code can be used for a sensitivity analysis evéreiabsence of experimental data.
If only simulations are available, set all the componentthebbsData structure to bg] . In this
case, there will be no parametérto calibrate to field data. Hence the model will construct an
emulator for the simulation code.

25

R =0.05792 R =0.07948 R =0.09712 R = 0.09956 R=0.1222
__ C=0.05436 C=0.19768 C =0.23764 C =0.21048 C =0.09822
‘)
o SIM 5| M | 5| M 5| M| SIM
Eo 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
R = 0.13084 R = 0.14804 R =0.16756 R =0.1898 R = 0.20948
__ C=0.1498 C =0.09794 C =0.07416 C=0.1236 C=0.17624
2]
[; ; ;
rchOOprOC(m:O W
Eo 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
R = 0.22508 R = 0.23308 R = 0.24604 R =0.2676 R =0.28812
__ C=0.22748 C =0.16392 C=0.1914 C =0.0885 C = 0.24656
‘2
° 5| ::I 5| 5 5 5
rOO()OooooooOOOOO EEEO00OE0Oe00%0
.E 0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
R = 0.2956 R =0.31552 R =0.32724 R = 0.35024 R =0.36132
__ C=0.11674 C =0.10722 C =0.22366 C =0.07018 C=0.1345
‘)
PR I I] I
rgxxmﬂmm mo(mmm)o
.E 0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
R =0.38332 R = 0.39952 R = 0.40332 R = 0.42644 R =0.44784
__ C=0.15636 C=0.17946 C =0.14566 C =0.2087 C = 0.06096
‘)
© 5| ' 5| 5 5 5
roO(I)Ofmmﬂ:O roOOOCOOO(m:O
Eo 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Height (m) Height (m) Height (m) Height (m) Height (m)

Figure 10: Hold-out predictions, sorted by the valueraf,.
9 Thepout object

The ball dropping example has produgealit which holds a variety of objects. The
preprocessing functioreaddata() constructs thebsData andsimData objects. The
obsData object holds information regarding the physical obseovatiata, while thesimData
object holds information regarding the simulation outprut)uding the basis representations for
the multivariate simulation output and the discrepancysbas

The functionsetupModel() attaches four additional objectspout : data , model ,

priors , andmcmc It also creates an empty objgmtals , which will later hold the MCMC
output produced bgpmcmc() . Hence the posterior samples for the various parametelrbavil
kept in thepvals object. Thedata object holds transformations of the simulation and obskrve
data that are required for likelihood evaluations used &nMICMC algorithm. There should be no
need to modify this data. Thmodel object holds the all of the additional objects required to
evaluate the likelihood and prior. Tipeiors object holds the prior specification for each of the

26

Time (s) Time (s) Time (s) Time (s)

Time (s)

C =0.05436 C =0.06096 C =0.07018 C =0.07416 C =0.0885
R =0.05792 R =0.44784 R =0.35024 R =0.16756 R =0.2676
e I U R B
EEOEPEEE0eEe00 (EE0aR0aE9000050)
0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
C =0.09794 C =0.09822 C =0.10722 C=0.11674 C=0.1236
R =0.14804 R =0.1222 R =0.31552 R =0.2956 R =0.1898
5| | 5| 5 5 5
romoocﬁﬂﬁ’ooo (EEOIEEE00955850)
0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
C=0.1345 C =0.14566 C =0.1498 C =0.15636 C =0.16392
R =0.36132 R =0.40332 R =0.13084 R =0.38332 R =0.23308
5| ' 5| 5 5 5
W W
0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
C=0.17624 C=0.17946 C=0.1914 C=0.19768 C =0.2087
R =0.20948 R =0.39952 R =0.24604 R =0.07948 R =0.42644
5 | 5| 5 5 5
W
0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
C=0.21048 C =0.22366 C =0.22748 C=0.23764 C =0.24656
R =0.09956 R =0.32724 R =0.22508 R =0.09712 R =0.28812
5 M 5| 5 5 5
r\ooOOOCOOO(mID
0 0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Height (m) Height (m) Height (m) Height (m) Height (m)

Figure 11: Hold-out predictions, sorted by the valuegf,.

model parameters. This includes upper and lower boundsafdr parameter. Finally, thmcmc

object holds information required to carry out the MCMC séinmtp In particular, step sizes used

in the Metropolis and Hastings updates for each paramekdis.object is modified when the

stepsize estimation is carried outgpmcmc() is called.

Detailed descriptions of each of these fields is providetiénréference manual.

References

D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computnodel calibration using

2008.

high-dimensional outputlournal of the American Statistical Associatjdi93(482):570-583,

Dave Higdon. Space and space-time modeling using processlotions. In C. Anderson,

27

Emulator holdout residuals
1 T T

0.8 1

04r N

0.2 1

Residual Time (s)
o
{

-1 ! ! ! !
0 5 10 15 20 25

Height (m)

Figure 12: Residuals for each run of the simulator (one cpereun).
V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, edit@santitative Methods for Current
Environmental Issuepages 37-56, London, 2002. Springer Verlag.

M.C. Kennedy and A. O’'Hagan. Bayesian calibration of coraputodels.Journal of the Royal
Statistical Society: Series B (Statistical Methodolo®3(3):425-464, 2001.

Christian P. Robert and George CaseNionte Carlo statistical methodsSpringer-Verlag Inc,
1999.

28

6 6 6 P
43 - -
oy 4 4 = 4
1 e _ =
o /

2 2 2

0 0 0

0 10 20 0 10 20 0 10 20

6 6 6
we
(ST 4 4 4
1 e _ ==
x e _ == _ == =

2 === 2 2

0 0 0

0 10 20 0 10 20 0 10 20

6 6 6
=0
(ST 4 4 4
e _ e
T2 _—===" 2 == 2 ===

0 0 0

0 10 20 0 10 20 0 10 20
Height (m) Height (m) Height (m)

Figure 13: Predictions for a selection of valuedi, andCsjm, to get a look at any main effects and
interactions. The red lines are the medians; the dasheH lm&s are the 5th and 95th percentiles.

29

Height (m)

Height (m)

Figure 14: Surface plots showing sensitivity.Xo(left) and tod (right).

30

